

	Source : https://github.com/jul/archery

	Tickets : https://github.com/jul/archery/issues?state=open

	Latest documentation : http://archery.readthedocs.org/en/latest/index.html

What is archery?

It is set of Mixins to use on MutableMapping giving the following features :

	Linear Algebrae;

	Vector like metrics;

	Searchable behaviour;

for convenience 3 concrete classes are provided :

	mdict (dict that follow the rules of linear algebrae based on dict);

	vdict (dict that have cos, abs, dot product);

	sdict (dict that are easily searchable);

following this inheritance graph of traits

Graph

[image: digraph G { node [shape=box]; splines=ortho; subgraph cluster_0 { label = "Copier"; style=line; color=puprle; Copier; } subgraph cluster_1 { label = "LinearAlgebrae"; style=line; color=green; Adder -> Muler [label = "a+.+a (n) = a * n"]; Muler -> Suber [label = "a-n = a * -n "]; Suber -> Diver [label = "a/n = a * 1/n"]; } Copier -> Adder [label = "generic deepcopy"]; subgraph cluster_2 { Dot -> Abs -> Cos; style=line; label = "Vector"; color=blue; } Copier -> Dot; Muler -> Dot; subgraph cluster_3 { label = "Searchable"; color = red; iter [label = "__iter__"]; iter -> search ; } Copier -> iter; Diver -> mdict [label = "concrete class dict"]; Cos -> vdict [label = "concrete class dict"]; search -> sdict [label = "concrete class dict"]; }]

Basic Usage

Using the ready to use class derived from dict

mdict

dict that supports consistently all the linear algebrae properties

Basically : dict that are vectors on arbitrary basis (recursively).

To learn more about its use and implementation:

	Video presentation in FOSDEM 2017 [https://www.youtube.com/watch?v=Rd6rY5zNcGM]

	or look at the presentation [http://jul.github.io/cv/pres.html#printable]

ex:

>>> from archery import mdict
>>> point = mdict(x=1, y=1, z=1)
>>> point2 = mdict(x=1, y=-1)
>>> print((2 * point + point2)/4)
>>> # OUT : {'y': 0.25, 'x': 0.75, 'z': 0.5}
>>> print(point - point2)
>>> # OUT : {'y': 2, 'x': 0, 'z': 1}
>>> b=mdict(x=2, z=-1)
>>> a=mdict(x=1, y=2.0)
>>> a+b
>>> # OUT: {'y': 2.0, 'x': 3, 'z': -1}
>>> b-a
>>> # OUT: {'y': -2.0, 'x': 1, 'z': -1}
>>> -(a-b)
>>> # OUT: {'y': -2.0, 'x': 1, 'z': -1}
>>> a+1
>>> # OUT: {'y': 3.0, 'x': 2}
>>> -1-a
>>> # OUT: {'y': -3.0, 'x': -2}
>>> a*b
>>> # OUT: {'x': 2}
>>> a/b
>>> # OUT: {'x': 0}
>>> 1.0*a/b
>>> # OUT: {'x': 0.5}

vdict

dict that defines abs(), dot(), cos() in the euclidean meaning

	ex::

	>>> from archery import vdict as Point
>>>
>>> u = Point(x=1, y=1)
>>> v = Point(x=1, y=0)
>>> u.cos(v)
>>> 0.7071067811865475
>>> u.dot(v)
>>> # OUT: 1
>>> u.cos(2*v)
>>> # OUT: 0.7071067811865475
>>> u.dot(2*v)
>>> #OUT: 2
>>> abs(u)
>>> #OUT: 1.4142135623730951
>>> u3 = Point(x=1, y=1, z=2)
>>> u4 = Point(x=1, y=3, z=4)
>>> u3 + u4
>>> #OUT: dict(x=2, y=4, z=6)
>>> assert u4 + u4 == 2*u4
>>> from archery import vdict
>>> from math import acos, pi
>>> point = vdict(x=1, y=1, z=1)
>>> point2 = vdict(x=1, y=-1)
>>> point2 = mdict(x=1, y=-1)
>>> print((2 * point + point2)/4)
>>> # OUT : {'y': 0.25, 'x': 0.75, 'z': 0.5}
>>> print(acos(vdict(x=1,y=0).cos(vdict(x=1, y=1)))*360/2/pi)
>>> # OUT : 45.0
>>> print(abs(vdict(x=1, y=1)))
>>> # OUT : 1.41421356237
>>> print(vdict(x=1,y=0,z=3).dot(vdict(x=1, y=1, z=-1)))
>>> #OUT -2

sdict

dict made for searching value/keys/Path with special interests.

Basically, it returns an interator in the form of a tuple being all the keys and the value.
It is a neat trick, if you combine it with make_from_path, it helps select exactly what you want in a dict:

>>> from archery import sdict, make_from_path
>>> tree = sdict(
... a = 1,
... b = dict(
... c = 3.0,
... d = dict(e=True)
...),
... point = dict(x=1, y=1, z=0),
...)
>>> list(tree.leaf_search(lambda x: type(x) is float))
>>> #Out: [3.0]
>>> res = list(tree.search(lambda x: ("point") in x))
>>> ## equivalent to list(tree.search(lambda x: Path(x).contains("point")))
>>> print(res)
>>> #Out: [('point', 'y', 1), ('point', 'x', 1), ('point', 'z', 0)]
>>> sum([make_from_path(mdict, r) for r in res])
>>> #Out: {'point': {'x': 1, 'y': 1, 'z': 0}}

Advanced usage

This library is a proof of the consistent use of Mixins on MutableMapping [https://docs.python.org/3.7/library/collections.abc.html?highlight=mutablemapping#collections.abc.MutableMapping] gives the property seen in the basic usage.

The Mixins do not require any specifics regarding the implementation and should work if I did my job properly with
any kinds of MutableMapping.

Here is an example of a cosine similarities out of the box on the Collections.Counter

>>> from collections import Counter
>>> from archery import VectorDict
>>> class CWCos(VectorDict, Counter):
... pass
>>>
>>> CWCos(["mot", "wut", "wut", "bla"]).cos(CWCos(["mot","wut", "bla"]))
>>> # OUT: 0.942809041582

You can also inherit LinearAlgebrae

API

VectorDict / vdict

	
class archery.trait.Vector

	
	
__abs__()

	return the absolute value (hence >=0)
aka the distance from origin as defined in Euclidean geometry.
Keys of the dict are the dimension, values are the metrics
https://en.wikipedia.org/wiki/Euclidean_distance

	
cos(v)

	returns the cosine similarity of 2 mutable mappings (recursive)
https://en.wikipedia.org/wiki/Cosine_similarity
dict().cos(dict(x=….)) will logically yield division by 0 exception.
http://math.stackexchange.com/a/932454

	
dot(v)

	scalar product of two MappableMappings (recursive)
https://en.wikipedia.org/wiki/Dot_product

Searchable, sdict

	
class archery.trait.Searchable

	
	
leaf_search(predicate)

	Return a generator all all values matching
the predicates

	
search(predicate)

	Return a generator of all tuples made of :
- all keys leading to a value
- and the value itself
that match the predicate on the Path

Path

Basically a class meant for making search in sdict more readable
so that you have shortcuts that are more meaningfull than manipulating a tuple

	
class archery.Path

	
	
contains(*a_tuple)

	checks if the serie of keys is contained in a path

>>> p = Path(['a', 'b', 'c', 'd'])
>>> p.contains('b', 'c')
>>> True

	
endswith(*a_tuple)

	check if path ends with the consecutive given has argumenbts value

>>> p = Path(['a', 'b', 'c'])
>>> p.endswith('b', 'c')
>>> True
>>> p.endswith('c', 'b')
>>> False

	
key()

	function provided for code readability:
- returns all the keys in the Path

	
startswith(*a_tuple)

	checks if a path starts with the value

>>> p = Path(['a', 'b', 'c', 'd'])
>>> p.startswith('a', 'b')
>>> True

	
value()

	function provided for code readability:
- returns the left most value of the Path aka the value

make_from_path

Making dict great vectors!

	
archery.make_from_path(type_of_mapping, path)

	Work in Progress
create a mutable mapping from a Path (tuple made of a series of keys in a dict leading to a
value followed by a value).
The source is used a mapping factory and is reset in the process

>>> make_from_path(dict, ("y", "z", 2))
>>> #Out[2]: {'y': {'z': 2}}

mapping_row_iter

Making dict great vectors!

	
archery.mapping_row_iter(tree, path=<object object>)

	iterator on a tree that yield an iterator on a mapping in the form of
a list of ordered key that leads to the element and the value

>>> from archery import mapping_row_iter
>>> [x for x in mapping_row_iter({
... "john" : {'math':10.0, 'sport':1.0},~
... "lily" : { 'math':20, 'sport':15.0}
... })]
>>> #[['john', 'sport', 1.0], ['john', 'math', 10.0],~
>>> #['lily', 'sport', 15.0], ['lily', 'math', 20]]

Detailed documentation

Contents:

	Having fun

	Design

	What is addition in MutableMapping useful for?

	Changelog and roadmap

Indices and tables

	Index

	Module Index

	Search Page

Having fun

Mixing scalars and records (side effect)

You can also the use the addition in the meaning of a record.
That is what the yahi module on pypi does https://github.com/jul/yahi

>>> 2*mdict(x=1, y="lo",z=[2])
{'y': 'lolo', 'x': 2, 'z': [2, 2]}
>>> mdict(y=1, z=1)*Daikyu(x=1, y="lo",z=[2])*2
{'y': 'lolo', 'z': [2, 2]}
>>> a=mdict(dictception=dict(a=1,b=2), sample = 1, data=[1,2])
>>> b=mdict(dictception=dict(c=-1,b=2), sample = 2, data=[-1,-2])
>>> a+b
{'sample': 3, 'dictception': {'a': 1, 'c': -1, 'b': 4}, 'data': [1, 2, -1, -2]}
>>> mdict(dictception=1, sample=1)* a*b
{'sample': 2, 'dictception': {'b': 4}}

Pushing the vice to create a rotation matrix with a dict

#!/usr/bin/env python3
from archery import mdict, vdict
from math import pi, cos, sin, acos

class Matrix(mdict):
 def __call__(self, other):
 other = other.copy()
 res= vdict()
 for (src, dst), functor in self.items():
 res += mdict({ dst: functor(other[src])})
 return res

theta = pi/6

u = mdict(x=1, y=2)
v = mdict(x=1, y=0)
alien = vdict(x=u, y=v)

def rotation_maker(theta):
 """"Matrix takes as key (SRC, DST) (which is the opposite of "actual notation")
 """
 return Matrix({
 ("x", "x") : lambda v:1.0 * v * cos(theta),
 ("y", "x") : lambda v:1.0 * -v * sin(theta),
 ("x", "y") : lambda v:1.0 * v * sin(theta),
 ("y", "y") : lambda v:1.0 * v * cos(theta)
 })

rotation = rotation_maker(pi/6)

print(u)
OUT:{'x': 1, 'y': 2}
print(rotation(u))
OUT:{'x': -0.13397459621556118, 'y': 2.232050807568877}
print("*" * 80)
OUT:**
print(v)
OUT:{'x': 1, 'y': 0}
print(rotation(v))
OUT:{'x': 0.8660254037844387, 'y': 0.49999999999999994}
print(acos(vdict(v).cos(vdict(rotation(v))))/2 / pi * 360)
OUT:29.999999999999993
print(acos(vdict(v).cos(vdict(rotation_maker(pi/3)(v))))/2 / pi * 360)
OUT:60.0
print(acos(vdict(v).cos(vdict(rotation_maker(pi/5)(v))))/2 / pi * 360)
OUT:36.0
print(alien)
print(acos(alien.cos(rotation_maker(pi/4)(alien)))/2 / pi * 360)
print(alien)
print(rotation_maker(pi/4)(alien))
print(alien)
print(u)
print(v)

Design

Traits are Mixins, behaviours. All these terms recovers loosely the same idea.

In this case refering to even older conventions traits are concrete classes for abstract classes/interfaces.

collections.MutableMapping defines an interface and some concrete methods. Since isinstance relies on interfaces (ducktyping)
I can safely use it to implement methods that don’t exists and will normally work for most Mappings.

Quivers : consistent sets of Traits

Note

Yes, it is a pun, trait = arrow <=> quiver = set of arrows.

Inclusive Trait

If a key is absent on one of the Mapping, it will be considered the neutral element. An empty list, for list, 0 for int, 0.0 for float…

The behaviour of addition and substraction is consistently deriving from the boolean algebrae meaning of + in a set context where + means union.

Thus Addition and substraction are inclusive.

Exclusive Trait

Multiplication operates as an intersection, because on one hand it is consistentwith the set/boolean meaning of multiplication, and
also that neutral element of addition, is normaly the null element of multiplication. Since multiplication implies division, instead of multiplying by 0
and keeping present in at least one dict, I prefer to avoid the raging division by zero.
In short, I try to avoid my dict to explode when dividing by 0. I am weak I know.

Summary of the behaviours and dependancies

	Operation

	Short

	Behaviour

	Requires

	Safe

	Name

	Copier

	copy

	None

	
	
	

	Addition

	add

	Inclusive

	copy

	Yes

	InclusiveAdder

	Multiplication

	mul

	Exclusive

	add,copy

	Yes

	ExclusiveMuler

	Substraction

	sub

	Inclusive

	add,mul,copy

	Yes

	InclusiveSubber

	Division

	div

	Exclusive

	add,mul,sub,copy

	No

	TaintedExclusiveDiver

What is addition in MutableMapping useful for?

It is used with yahi [http://github.com/jul/yahi] as an exemple. I find addition
on MutableMapping a very convenient way to reduce by using in place addition (__iadd__).

VectorDict [http://vectordict.readthedocs.org/en/latest/] also has an exemple of map/reduce with multiprocessing word counting [http://vectordict.readthedocs.org/en/latest/vector.html#word-counting-with-multiprocess-and-vector-dict]

MapReduce [http://en.wikipedia.org/wiki/MapReduce] is a way of treating big data without consuming too much memory ensuring relativley good performance.
It is normaly considered to belong to the functional paradigm and is best used with generators.

Changelog and roadmap

Changelog

	1.1.1

	Trying very hard to have the README.rst formated.

	1.1.0

	make_from_path : it made no sense it took a first argument
a MutableMapping that would be destroyed in the process.
Now takes a type of MutableMapping as an input.

	1.0.0

	Flatter and simpler naming (while keeping descendant compatibility)

	0.1.8

	release with better code coverage

	0.1.7

	Maintenance release correcting minor bugs in preparation for
the 1.0 release

	0.1.6

	Tested py3.2 on my freeBSD, it works for me ©

	0.1.4

	closes #6 : trying to install on debian stable is like contemplating a machine
frozen 5 years ago. Rerunning tests on debian

	0.1.3

	blocking install if tests don’t pass

	0.1.2

	py3 compliance

	0.1.1

	closing issue in iadd: some performance issue in __iadd__ aka +=

	0.1.0

	initial release

Convention:

version x.y.z

while in beta convention is :

	x = 0

	y = API change

	z = bugfix and/or improvement

and then

	x = API change

	y = improvement

	z = bugfix

Roadmap

	1.1.1/2

	
	trying to have a valider valid README.rst (python setup check -r is not enough)

	1.0.0

	
	Flattening the structure of archery and making naming more obvious

	Keeping the old API compatible

	Begining deprecation

	maybe prepare a set of trait to make recursive dict looks like
sets in a consistent way

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 archery	

Index

 _
 | A
 | C
 | D
 | E
 | K
 | L
 | M
 | P
 | S
 | V

_

 	
 	__abs__() (archery.trait.Vector method)

A

 	
 	archery (module), [1]

C

 	
 	contains() (archery.Path method)

 	
 	cos() (archery.trait.Vector method)

D

 	
 	dot() (archery.trait.Vector method)

E

 	
 	endswith() (archery.Path method)

K

 	
 	key() (archery.Path method)

L

 	
 	leaf_search() (archery.trait.Searchable method)

M

 	
 	make_from_path() (in module archery)

 	
 	mapping_row_iter() (in module archery)

P

 	
 	Path (class in archery)

S

 	
 	search() (archery.trait.Searchable method)

 	
 	Searchable (class in archery.trait)

 	startswith() (archery.Path method)

V

 	
 	value() (archery.Path method)

 	
 	Vector (class in archery.trait)

 nav.xhtml

 Table of Contents

 		
 What is archery?

 		
 Having fun

 		
 Mixing scalars and records (side effect)

 		
 Pushing the vice to create a rotation matrix with a dict

 		
 Design

 		
 Quivers : consistent sets of Traits

 		
 Inclusive Trait

 		
 Exclusive Trait

 		
 Summary of the behaviours and dependancies

 		
 What is addition in MutableMapping useful for?

 		
 Changelog and roadmap

 		
 Changelog

 		
 Convention:

 		
 Roadmap

_images/graphviz-ea9fd70dd0a85d192132b1ddbde6812a3fb1dcce.png
Copier

Copier

fgeneric deepeopy

Se:\nimble L':Ae:\rAlgebme
_iter__ Adder

nI.+:| m=a*n
search Muler

copcrete class dict

1pr
v vy
sdict Suber Dot
n=a*ln
v A J
Diver Abs
loncre'e class dict
A J
mdict Cos
:oncre!e class dict
vdict

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

