
archery Documentation
Release 0.1.8

Julien HawkeEye Tayon

Oct 29, 2018

Contents

1 Detailed documentation 3
1.1 Package content . 3
1.2 Bow Specialized dict ready to use based on quivers . 4
1.3 Traits are Mixins . 5
1.4 Quivers : consistent sets of Traits . 7
1.5 Barrack: the place for stuff connected to archery . 8
1.6 Misc interesting questions . 8
1.7 Changelog and roadmap . 10

2 Indices and tables 11

i

ii

archery Documentation, Release 0.1.8

• Source : https://github.com/jul/archery

• Tickets : https://github.com/jul/archery/issues?state=open

• Latest documentation : http://archery.readthedocs.org/en/latest/index.html

It is an enhancement of MutableMapping based on Mixins. It currently only offers:

• addition;

• substraction;

• multiplication;

• division.

And also mixins for:

• searching

Or treating dict as vectors giving them:

• norms (abs)

• cosine

• dot product

Contents 1

https://github.com/jul/archery
https://github.com/jul/archery/issues?state=open
http://archery.readthedocs.org/en/latest/index.html

archery Documentation, Release 0.1.8

2 Contents

CHAPTER 1

Detailed documentation

Contents:

1.1 Package content

1.1.1 archery.trait

see: Traits are Mixins

Traits are the Perl equivalent of mixins (ruby behaviour). The mixins in archery are dedicated to provide customisable
operator on mapping for :

• addition,

• substraction,

• division,

• multiplication

archery.trait provides individual trait.

1.1.2 archery.quiver

see Quivers : consistent sets of Traits

A quiver is a set of traits lovingly assembled so that they are consistent.

1.1.3 archery.bow

see Bow Specialized dict ready to use based on quivers

Ready made MutableMapping (dict) that supports addition.

3

archery Documentation, Release 0.1.8

1.1.4 archery.barrack

see Barrack: the place for stuff connected to archery

Misc utilities.

1.2 Bow Specialized dict ready to use based on quivers

1.2.1 vdict

A dict that supports cosine, abs, dot product:

>>> from archery import vdict as Point
>>>
>>> u = Point(x=1, y=1)
>>> v = Point(x=1, y=0)
>>> u.cos(v)
>>> 0.7071067811865475
>>> u.dot(v)
>>> 1
>>> u.cos(2*v)
>>> 0.7071067811865475
>>> u.dot(2*v)
>>> 2
>>> abs(u)
>>> 1.4142135623730951
>>> u3 = Point(x=1, y=1, z=2)
>>> u4 = Point(x=1, y=3, z=4)
>>> u3 + u4
>>> dict(x=2, y=4, z=6)
>>> assert u4 + u4 == 2*u4

1.2.2 mdict (former Daikyu)

Mnemonic for multiplicative dict that can

• addition;

• substraction;

• multiplication;

• division (please, please be careful).

It instanciates like a dict:

>>> from archery import mdict
>>> b=mdict(x=2, z=-1)
>>> a=mdict(x=1, y=2.0)
>>> a+b
OUT: {'y': 2.0, 'x': 3, 'z': -1}
>>> b-a
OUT: {'y': -2.0, 'x': 1, 'z': -1}
>>> -(a-b)
OUT: {'y': -2.0, 'x': 1, 'z': -1}
>>> a+1

(continues on next page)

4 Chapter 1. Detailed documentation

archery Documentation, Release 0.1.8

(continued from previous page)

OUT: {'y': 3.0, 'x': 2}
>>> -1-a
>>> # OUT: {'y': -3.0, 'x': -2}
>>> a*b
OUT: {'x': 2}
>>> a/b
OUT: {'x': 0}
>>> 1.0*a/b
OUT: {'x': 0.5}

1.2.3 Why div is special?

Because div is special and I stick to python 2 behaviour on this one.

http://beauty-of-imagination.blogspot.fr/2012/05/dividing-is-not-as-easy-at-it-seems.html

Don’t flame me yet, I can provide another diver, but my brain is yet kaput.

See by yourself::

>>> b/2
OUT: {'x': 0, 'z': 0}
>>> b/2.0
OUT: {'x': 1.0, 'z': -0.5}
>>> 2/b
OUT: {'x': 0, 'z': -2}

But you can correct this::

>>> 2.0/(1.0*b)
OUT: {'x': 1.0, 'z': -2.0}

1.2.4 Mixing scalars and records

My prefered part :)

>>> 2*mdict(x=1, y="lo",z=[2])
{'y': 'lolo', 'x': 2, 'z': [2, 2]}
>>> mdict(y=1, z=1)*Daikyu(x=1, y="lo",z=[2])*2
{'y': 'lolo', 'z': [2, 2]}
>>> a=mdict(dictception=dict(a=1,b=2), sample = 1, data=[1,2])
>>> b=mdict(dictception=dict(c=-1,b=2), sample = 2, data=[-1,-2])
>>> a+b
{'sample': 3, 'dictception': {'a': 1, 'c': -1, 'b': 4}, 'data': [1, 2, -1, -2]}
>>> mdict(dictception=1, sample=1)* a*b
{'sample': 2, 'dictception': {'b': 4}}

Whatever meanings you gave to + it propagates the meaning. For algebraic use I recommend to use algebraic types
(complex, numpy arrays, floats, int).

1.3 Traits are Mixins

Traits are Mixins, behaviours. All these terms recovers loosely the same idea.

1.3. Traits are Mixins 5

http://beauty-of-imagination.blogspot.fr/2012/05/dividing-is-not-as-easy-at-it-seems.html

archery Documentation, Release 0.1.8

In this case refering to even older conventions traits are concrete classes for abstract classes/interfaces.

collections.MutableMapping defines an interface and some concrete methods. Since isinstance relies on interfaces
(ducktyping) I can safely use it to implement methods that don’t exists and will normally work for most Mappings.

1.3.1 General Rules:

Generic behaviour

The Operation is propagated for each keys of both Mappings and will be propagated to the ending values. If the values
are MutableMapping with the operation they will propagate. If the values are not MutableMapping with the trait, the
operation will apply in place.

Warning: If your MutableMapping with Addition is made of MutableMapping without it, you’ll have a problem.
To solve the problem use :ref:‘bowyer‘_

Scalar Operations

A scalar is everything that is not a MutableMapping. Trait support things such as integer, array operation by applying
the operation on each values of the MutableMapping. Order is respected.

Inclusive Trait

If a key is absent on one of the Mapping, it will be considered the neutral element. An empty list, for list, 0 for int, 0.0
for float. . .

The behaviour of addition and substraction is consistently deriving from the boolean algebrae meaning of + in a set
context where + means union.

Thus Addition and substraction are inclusive.

Exclusive Trait

Multiplication operates as an intersection, because on one hand it is consistentwith the set/boolean meaning of multi-
plication, and also that neutral element of addition, is normaly the null element of multiplication. Since multiplication
implies division, instead of multiplying by 0 and keeping present in at least one dict, I prefer to avoid the raging
division by zero. In short, I try to avoid my dict to explode when dividing by 0. I am weak I know.

1.3.2 Summary of the behaviours and dependancies

Operation Short Behaviour Requires Safe Name
Copier copy None
Addition add Inclusive copy Yes InclusiveAdder
Multiplication mul Exclusive add,copy Yes ExclusiveMuler
Substraction sub Inclusive add,mul,copy Yes InclusiveSubber
Division div Exclusive add,mul,sub,copy No TaintedExclusiveDiver

6 Chapter 1. Detailed documentation

archery Documentation, Release 0.1.8

1.3.3 Caveat

Why is dividing unsafe?

http://beauty-of-imagination.blogspot.fr/2012/05/dividing-is-not-as-easy-at-it-seems.html

1.4 Quivers : consistent sets of Traits

Yes, it is a pun, trait = arrow <=> quiver = set of arrows.

1.4.1 Available quivers

VectorDict

A quiver to add cosinus/abs/dot to any MutableMappings (A mutable mapping is a meta class that behaves like a dict

>>> from archery.quiver import VectorDict
>>> from collection import Counter
>>> from math import cos, pi
>>> class CCos(Counter, VectorDict): pass
>>>
>>> sim = CCos(["word", "hein?"]).cos(CCos(["word"]))
>>> assert sim == cos(pi/4)
>>>
>>> class Point(VectorDict, cos): pass
>>>
>>> u = Point(x=1, y=1)
>>> v = Point(x=1, y=0)
>>> u.cos(v)
>>> 0.7071067811865475
>>> u.dot(v)
>>> 1
>>> u.cos(2*v)
>>> 0.7071067811865475
>>> u.dot(2*v)
>>> 2
>>> abs(u)
>>> 1.4142135623730951

SimplyAdd

A quiver to make your MutableMapping add:

>>> from archery.quiver import SimplyAdd
>>> class Daddy(SimplyAdd, dict): pass
>>>
>>> a= Daddy({'x' : 1 , 'y' : []}, 'z' : "hell")
>>> b= Daddy({'x' : 2 , 'y' : [1,3], 'z', "o"})
>>> print a+b
{'y': [1, 3], 'x': 3, 'z': 'hello'}
>>> a+=b
>>> print a

(continues on next page)

1.4. Quivers : consistent sets of Traits 7

http://beauty-of-imagination.blogspot.fr/2012/05/dividing-is-not-as-easy-at-it-seems.html

archery Documentation, Release 0.1.8

(continued from previous page)

{'y': [1, 3], 'x': 3, 'z': 'hello'}
>>>
>>> r=Daddy(a=1)
>>> print r+1
{'a': 2}
>>> print -1+a
{'a':0}

If you are smart, you almost have the subtraction ^_^

LinearAlgebrae

A quiver to make your MutableMapping support + - / *

Pretty much as easy to use as SimplyAdd

1.4.2 Why quivers?

My purpose is not to make trait for the sake of making traits. It is to have a bigger set of concrete class for purpose.
But I want them to be consistent.

My (not yet available) unnitest for trait check for actual results (such as 2+2=4), my unnitest (not yet available) test
for how well the operations are coupled in terms of commutation, symmetry, distributivity, associativity.

I see nothing wrong in changing the behviour of add and sub (you may want to have fun with non euclidian space).
But you may want an algebra to follow the least surprise principle. That’s all about it.

1.5 Barrack: the place for stuff connected to archery

1.5.1 mapping_row_iter

My secret weapon for transforming dict in CSV:

>>> from archery.barrack import mapping_row_iter
>>> [x for x in mapping_row_iter({
... "john" : {'math':10.0, 'sport':1.0},
... "lily" : { 'math':20, 'sport':15.0}
... })]
[['john', 'sport', 1.0], ['john', 'math', 10.0],
['lily', 'sport', 15.0], ['lily', 'math', 20]]

1.6 Misc interesting questions

1.6.1 What is addition in MutableMapping useful for?

It is used with parseweblog as an exemple. I find addition on MutableMapping a very convenient way to reduce by
using in place addition (__iadd__).

VectorDict also has an exemple of map/reduce with multiprocessing word counting

8 Chapter 1. Detailed documentation

https://github.com/jul/parseweblog
http://vectordict.readthedocs.org/en/latest/
http://vectordict.readthedocs.org/en/latest/vector.html#word-counting-with-multiprocess-and-vector-dict

archery Documentation, Release 0.1.8

MapReduce is a way of treating big data without consuming too much memory ensuring relativley good performance.
It is normaly considered to belong to the functional paradigm and is best used with generators.

1.6.2 Doesn’t it overlaps with defaultdict?

No. Results seems similar, but the collections.defaultdict philosophy is different and does not mix in very well with
archery because you have a conflict. I therefore admit, there is a design flaw in VectorDict.

defaultdict creates missing key from a factory (a function with void argument) and will consider that asking for a key
that does not exists makes it real.

MutableMapping with the default traits will raise an Exception in such case, however, if you add to MutableMapping,
as the default Adder is Inclusive, it will add the exisiting key of the source and destination. No values in MutableMap-
ping with the default Adder will exists unless there are already defined in the MutableMappings.

Since traits are flexible, You or I could provide more stricts dict.

Trait seems to provide autovivification but it does not ! No values will be created on the fly.

As a result, there is a conflict between defaultdict and traits : for instance with a defaultdict when you add with a value
that does not exists in one of the dict you should use the default factory. With actual traits, it is assumed the value is
the neutral element of addition, thus having far less problems than with defaultdict.

1.6.3 Why so much fuss on Algebrae if you use Addition 99% of the time?

Because Algebrae is not about knowing the value of 1 + 1, it is about consistency rules for operator. People usually
focus on the operand of an operation to check if it works, I focus on the operator behaviour and how well they behave
together. Mathematical symbols are a litterature whose intuition can safely work if we stay in the safeguard of the
acceptable behaviour. These behaviours are commonly refered: distributivity, neutral element, scalar multiplication
(or linear combinations), associativity.

Algebrae, is as a result for me only a functional test for the macro behaviour of addition. Addition alone has strictly
no sense.

1.6.4 What is your naming convention, and what is archery exactly?

It is all explained her : http://beauty-of-imagination.blogspot.com/2012/05/joice-and-headache-of-naming.html

1.6.5 Why do you ask to sign a legal disclaimer with my blood and sign a pact with
Satan if I want to use div?

We you look into the abyss, the abyss look into you: http://beauty-of-imagination.blogspot.fr/2012/05/
dividing-is-not-as-easy-at-it-seems.html

Using division will make you lose your sanity and your confidence in computers reliability. Unless, you are fully
prepared for this, and you have agreed I warned you, and you really know what you are doing : I warn you to avoid
using division on MutableMapping.

I can use div since I don’t fear losing what I am deprived of (sanity).

1.6. Misc interesting questions 9

http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Autovivification
http://beauty-of-imagination.blogspot.com/2012/05/joice-and-headache-of-naming.html
http://beauty-of-imagination.blogspot.fr/2012/05/dividing-is-not-as-easy-at-it-seems.html
http://beauty-of-imagination.blogspot.fr/2012/05/dividing-is-not-as-easy-at-it-seems.html

archery Documentation, Release 0.1.8

1.6.6 Who needs archery?

• people wanting to experiment what a good addition on any MutableMapping (dict included) coud be (trait
documentation is for them);

• people wanting to have a consistent set of operations for their MutableMapping (quiver is for them);

• those who wants ready made dict pretty practical for map/reduce (bow is for them).

1.7 Changelog and roadmap

1.7.1 Changelog

0.1.6 Tested py3.2 on my freeBSD, it works for me ©

0.1.4 closes #6 : trying to install on debian stable is like contemplating a machine frozen 5 years ago. Rerunning tests
on debian

0.1.3 blocking install if tests don’t pass

0.1.2 py3 compliance

0.1.1 closing issue5 : some performance issue in __iadd__ aka +=

0.1.0 initial release

1.7.2 Convention:

version x.y.z

while in beta convention is :

• x = 0

• y = API change

• z = bugfix and/or improvement

and then

• x = API change

• y = improvement

• z = bugfix

1.7.3 Roadmap

Maybe backporting the search find and replace feature of VectorDict

10 Chapter 1. Detailed documentation

https://github.com/jul/archery/issues/5
http://vectordict.readthedocs.org

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

	Detailed documentation
	Package content
	Bow Specialized dict ready to use based on quivers
	Traits are Mixins
	Quivers : consistent sets of Traits
	Barrack: the place for stuff connected to archery
	Misc interesting questions
	Changelog and roadmap

	Indices and tables

