

	Source : https://github.com/jul/archery

	Tickets : https://github.com/jul/archery/issues?state=open

	Latest documentation : http://archery.readthedocs.org/en/latest/index.html

What is archery?

It is an enhancement of MutableMapping based on Mixins. It currently only offers:

	addition;

	substraction;

	multiplication;

	division.

And also mixins for:

	searching

Or treating dict as vectors giving them:

	norms (abs)

	cosine

	dot product

Detailed documentation

Contents:

	Package content
	archery.trait

	archery.quiver

	archery.bow

	archery.barrack

	Bow Specialized dict ready to use based on quivers
	vdict

	mdict (former Daikyu)

	Why div is special?

	Mixing scalars and records

	Traits are Mixins
	General Rules:

	Summary of the behaviours and dependancies

	Caveat

	Quivers : consistent sets of Traits
	Available quivers

	Why quivers?

	Barrack: the place for stuff connected to archery
	mapping_row_iter

	Misc interesting questions
	What is addition in MutableMapping useful for?

	Doesn’t it overlaps with defaultdict?

	Why so much fuss on Algebrae if you use Addition 99% of the time?

	What is your naming convention, and what is archery exactly?

	Why do you ask to sign a legal disclaimer with my blood and sign a pact with Satan if I want to use div?

	Who needs archery?

	Changelog and roadmap
	Changelog

	Convention:

	Roadmap

Indices and tables

	Index

	Module Index

	Search Page

Package content

archery.trait

see: Traits are Mixins

Traits are the Perl equivalent of mixins (ruby behaviour).
The mixins in archery are dedicated to provide customisable operator on
mapping for :

	addition,

	substraction,

	division,

	multiplication

archery.trait provides individual trait.

archery.quiver

see Quivers : consistent sets of Traits

A quiver is a set of traits lovingly assembled so that they are consistent.

archery.bow

see Bow Specialized dict ready to use based on quivers

Ready made MutableMapping (dict) that supports addition.

archery.barrack

see Barrack: the place for stuff connected to archery

Misc utilities.

Bow Specialized dict ready to use based on quivers

vdict

A dict that supports cosine, abs, dot product:

>>> from archery import vdict as Point
>>>
>>> u = Point(x=1, y=1)
>>> v = Point(x=1, y=0)
>>> u.cos(v)
>>> 0.7071067811865475
>>> u.dot(v)
>>> 1
>>> u.cos(2*v)
>>> 0.7071067811865475
>>> u.dot(2*v)
>>> 2
>>> abs(u)
>>> 1.4142135623730951
>>> u3 = Point(x=1, y=1, z=2)
>>> u4 = Point(x=1, y=3, z=4)
>>> u3 + u4
>>> dict(x=2, y=4, z=6)
>>> assert u4 + u4 == 2*u4

mdict (former Daikyu)

Mnemonic for multiplicative dict that can

	addition;

	substraction;

	multiplication;

	division (please, please be careful).

	It instanciates like a dict:

	>>> from archery import mdict
>>> b=mdict(x=2, z=-1)
>>> a=mdict(x=1, y=2.0)
>>> a+b
OUT: {'y': 2.0, 'x': 3, 'z': -1}
>>> b-a
OUT: {'y': -2.0, 'x': 1, 'z': -1}
>>> -(a-b)
OUT: {'y': -2.0, 'x': 1, 'z': -1}
>>> a+1
OUT: {'y': 3.0, 'x': 2}
>>> -1-a
>>> # OUT: {'y': -3.0, 'x': -2}
>>> a*b
OUT: {'x': 2}
>>> a/b
OUT: {'x': 0}
>>> 1.0*a/b
OUT: {'x': 0.5}

Why div is special?

Because div is special and I stick to python 2 behaviour on this one.

http://beauty-of-imagination.blogspot.fr/2012/05/dividing-is-not-as-easy-at-it-seems.html

Don’t flame me yet, I can provide another diver, but my brain is yet kaput.

	See by yourself::

	>>> b/2
OUT: {'x': 0, 'z': 0}
>>> b/2.0
OUT: {'x': 1.0, 'z': -0.5}
>>> 2/b
OUT: {'x': 0, 'z': -2}

	But you can correct this::

	>>> 2.0/(1.0*b)
OUT: {'x': 1.0, 'z': -2.0}

Mixing scalars and records

My prefered part :)

>>> 2*mdict(x=1, y="lo",z=[2])
{'y': 'lolo', 'x': 2, 'z': [2, 2]}
>>> mdict(y=1, z=1)*Daikyu(x=1, y="lo",z=[2])*2
{'y': 'lolo', 'z': [2, 2]}
>>> a=mdict(dictception=dict(a=1,b=2), sample = 1, data=[1,2])
>>> b=mdict(dictception=dict(c=-1,b=2), sample = 2, data=[-1,-2])
>>> a+b
{'sample': 3, 'dictception': {'a': 1, 'c': -1, 'b': 4}, 'data': [1, 2, -1, -2]}
>>> mdict(dictception=1, sample=1)* a*b
{'sample': 2, 'dictception': {'b': 4}}

Whatever meanings you gave to + it propagates the meaning.
For algebraic use I recommend to use algebraic types (complex, numpy arrays,
floats, int).

Traits are Mixins

Traits are Mixins, behaviours. All these terms recovers loosely the same idea.

In this case refering to even older conventions traits are concrete classes for abstract classes/interfaces.

collections.MutableMapping defines an interface and some concrete methods. Since isinstance relies on interfaces (ducktyping)
I can safely use it to implement methods that don’t exists and will normally work for most Mappings.

General Rules:

Generic behaviour

The Operation is propagated for each keys of both Mappings and will be propagated to the ending values.
If the values are MutableMapping with the operation they will propagate.
If the values are not MutableMapping with the trait, the operation will apply in place.

Warning

If your MutableMapping with Addition is made of MutableMapping
without it, you’ll have a problem. To solve the problem use :ref:`bowyer`_

Scalar Operations

A scalar is everything that is not a MutableMapping. Trait support things such
as integer, array operation by applying the operation on each values of the
MutableMapping. Order is respected.

Inclusive Trait

If a key is absent on one of the Mapping, it will be considered the neutral element. An empty list, for list, 0 for int, 0.0 for float…

The behaviour of addition and substraction is consistently deriving from the boolean algebrae meaning of + in a set context where + means union.

Thus Addition and substraction are inclusive.

Exclusive Trait

Multiplication operates as an intersection, because on one hand it is consistentwith the set/boolean meaning of multiplication, and
also that neutral element of addition, is normaly the null element of multiplication. Since multiplication implies division, instead of multiplying by 0
and keeping present in at least one dict, I prefer to avoid the raging division by zero.
In short, I try to avoid my dict to explode when dividing by 0. I am weak I know.

Summary of the behaviours and dependancies

	Operation

	Short

	Behaviour

	Requires

	Safe

	Name

	Copier

	copy

	None

	
	
	

	Addition

	add

	Inclusive

	copy

	Yes

	InclusiveAdder

	Multiplication

	mul

	Exclusive

	add,copy

	Yes

	ExclusiveMuler

	Substraction

	sub

	Inclusive

	add,mul,copy

	Yes

	InclusiveSubber

	Division

	div

	Exclusive

	add,mul,sub,copy

	No

	TaintedExclusiveDiver

Caveat

Why is dividing unsafe?

http://beauty-of-imagination.blogspot.fr/2012/05/dividing-is-not-as-easy-at-it-seems.html

Quivers : consistent sets of Traits

Yes, it is a pun, trait = arrow <=> quiver = set of arrows.

Available quivers

VectorDict

A quiver to add cosinus/abs/dot to any MutableMappings
(A mutable mapping is a meta class that behaves like a dict

>>> from archery.quiver import VectorDict
>>> from collection import Counter
>>> from math import cos, pi
>>> class CCos(Counter, VectorDict): pass
>>>
>>> sim = CCos(["word", "hein?"]).cos(CCos(["word"]))
>>> assert sim == cos(pi/4)
>>>
>>> class Point(VectorDict, cos): pass
>>>
>>> u = Point(x=1, y=1)
>>> v = Point(x=1, y=0)
>>> u.cos(v)
>>> 0.7071067811865475
>>> u.dot(v)
>>> 1
>>> u.cos(2*v)
>>> 0.7071067811865475
>>> u.dot(2*v)
>>> 2
>>> abs(u)
>>> 1.4142135623730951

SimplyAdd

A quiver to make your MutableMapping add:

>>> from archery.quiver import SimplyAdd
>>> class Daddy(SimplyAdd, dict): pass
>>>
>>> a= Daddy({'x' : 1 , 'y' : []}, 'z' : "hell")
>>> b= Daddy({'x' : 2 , 'y' : [1,3], 'z', "o"})
>>> print a+b
{'y': [1, 3], 'x': 3, 'z': 'hello'}
>>> a+=b
>>> print a
{'y': [1, 3], 'x': 3, 'z': 'hello'}
>>>
>>> r=Daddy(a=1)
>>> print r+1
{'a': 2}
>>> print -1+a
{'a':0}

If you are smart, you almost have the subtraction ^_^

LinearAlgebrae

A quiver to make your MutableMapping support + - / *

Pretty much as easy to use as SimplyAdd

Why quivers?

My purpose is not to make trait for the sake of making traits. It is to have
a bigger set of concrete class for purpose. But I want them to be consistent.

My (not yet available) unnitest for trait check for actual results (such as
2+2=4), my unnitest (not yet available) test for how well the operations are
coupled in terms of commutation, symmetry, distributivity, associativity.

I see nothing wrong in changing the behviour of add and sub (you may
want to have fun with non euclidian space). But you may want an algebra to
follow the least surprise principle. That’s all about it.

Barrack: the place for stuff connected to archery

mapping_row_iter

My secret weapon for transforming dict in CSV:

>>> from archery.barrack import mapping_row_iter
>>> [x for x in mapping_row_iter({
... "john" : {'math':10.0, 'sport':1.0},
... "lily" : { 'math':20, 'sport':15.0}
... })]
[['john', 'sport', 1.0], ['john', 'math', 10.0],
['lily', 'sport', 15.0], ['lily', 'math', 20]]

Misc interesting questions

What is addition in MutableMapping useful for?

It is used with parseweblog [https://github.com/jul/parseweblog] as an exemple. I find addition
on MutableMapping a very convenient way to reduce by using in place addition (__iadd__).

VectorDict [http://vectordict.readthedocs.org/en/latest/] also has an exemple of map/reduce with multiprocessing word counting [http://vectordict.readthedocs.org/en/latest/vector.html#word-counting-with-multiprocess-and-vector-dict]

MapReduce [http://en.wikipedia.org/wiki/MapReduce] is a way of treating big data without consuming too much memory ensuring relativley good performance.
It is normaly considered to belong to the functional paradigm and is best used with generators.

Doesn’t it overlaps with defaultdict?

No. Results seems similar, but the collections.defaultdict philosophy is different and does not mix in very well with archery because
you have a conflict. I therefore admit, there is a design flaw in VectorDict.

defaultdict creates missing key from a factory (a function with void argument) and will consider that asking for a key that does not exists makes it real.

MutableMapping with the default traits will raise an Exception in such case, however, if you add to MutableMapping, as the default Adder is Inclusive, it will add
the exisiting key of the source and destination. No values in MutableMapping with the default Adder will exists unless there are already defined in the MutableMappings.

Since traits are flexible, You or I could provide more stricts dict.

Trait seems to provide autovivification [http://en.wikipedia.org/wiki/Autovivification] but it does not ! No values will be created on the fly.

As a result, there is a conflict between defaultdict and traits : for instance with a defaultdict when you add with a value that does not exists in one of
the dict you should use the default factory. With actual traits, it is assumed the value is the neutral element of addition, thus having far less problems
than with defaultdict.

Why so much fuss on Algebrae if you use Addition 99% of the time?

Because Algebrae is not about knowing the value of 1 + 1, it is about consistency rules for operator. People
usually focus on the operand of an operation to check if it works, I focus on the operator behaviour and how
well they behave together. Mathematical symbols are a litterature whose intuition can safely work
if we stay in the safeguard of the acceptable behaviour. These behaviours are commonly refered: distributivity, neutral element, scalar
multiplication (or linear combinations), associativity.

Algebrae, is as a result for me only a functional test for the macro behaviour of addition. Addition alone has
strictly no sense.

What is your naming convention, and what is archery exactly?

It is all explained her :
http://beauty-of-imagination.blogspot.com/2012/05/joice-and-headache-of-naming.html

Why do you ask to sign a legal disclaimer with my blood and sign a pact with Satan if I want to use div?

We you look into the abyss, the abyss look into you:
http://beauty-of-imagination.blogspot.fr/2012/05/dividing-is-not-as-easy-at-it-seems.html

Using division will make you lose your sanity and your confidence in computers reliability. Unless,
you are fully prepared for this, and you have agreed I warned you, and you really know what you are doing :
I warn you to avoid using division on MutableMapping.

I can use div since I don’t fear losing what I am deprived of (sanity).

Who needs archery?

	people wanting to experiment what a good addition on any MutableMapping (dict included) coud be (trait documentation is for them);

	people wanting to have a consistent set of operations for their MutableMapping (quiver is for them);

	those who wants ready made dict pretty practical for map/reduce (bow is for them).

Changelog and roadmap

Changelog

	0.1.6

	Tested py3.2 on my freeBSD, it works for me ©

	0.1.4

	closes #6 : trying to install on debian stable is like contemplating a machine
frozen 5 years ago. Rerunning tests on debian

	0.1.3

	blocking install if tests don’t pass

	0.1.2

	py3 compliance

	0.1.1

	closing issue5 [https://github.com/jul/archery/issues/5] : some performance issue in __iadd__ aka +=

	0.1.0

	initial release

Convention:

version x.y.z

while in beta convention is :

	x = 0

	y = API change

	z = bugfix and/or improvement

and then

	x = API change

	y = improvement

	z = bugfix

Roadmap

Maybe backporting the search find and replace feature of VectorDict [http://vectordict.readthedocs.org]

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 What is archery?

 		
 Package content

 		
 archery.trait

 		
 archery.quiver

 		
 archery.bow

 		
 archery.barrack

 		
 Bow Specialized dict ready to use based on quivers

 		
 vdict

 		
 mdict (former Daikyu)

 		
 Why div is special?

 		
 Mixing scalars and records

 		
 Traits are Mixins

 		
 General Rules:

 		
 Generic behaviour

 		
 Scalar Operations

 		
 Inclusive Trait

 		
 Exclusive Trait

 		
 Summary of the behaviours and dependancies

 		
 Caveat

 		
 Why is dividing unsafe?

 		
 Quivers : consistent sets of Traits

 		
 Available quivers

 		
 VectorDict

 		
 SimplyAdd

 		
 LinearAlgebrae

 		
 Why quivers?

 		
 Barrack: the place for stuff connected to archery

 		
 mapping_row_iter

 		
 Misc interesting questions

 		
 What is addition in MutableMapping useful for?

 		
 Doesn’t it overlaps with defaultdict?

 		
 Why so much fuss on Algebrae if you use Addition 99% of the time?

 		
 What is your naming convention, and what is archery exactly?

 		
 Why do you ask to sign a legal disclaimer with my blood and sign a pact with Satan if I want to use div?

 		
 Who needs archery?

 		
 Changelog and roadmap

 		
 Changelog

 		
 Convention:

 		
 Roadmap

_static/up-pressed.png

_static/up.png

